
v All Mathematical truths are relative and conditional. — C.P. STEINMETZ v

4.1  Introduction

In the previous chapter, we have studied about matrices

and algebra of matrices. We have also learnt that a system

of algebraic equations can be expressed in the form of

matrices. This means, a system of linear equations like

a
1
 x + b

1
 y = c

1

a
2
 x + b

2
 y = c

2

can be represented as 
1 1 1

2 2 2

a b cx

a b cy

    
=    

    
. Now, this

system of equations has a unique solution or not, is

determined by the number a
1
 b

2
 – a

2 
b

1
. (Recall that if

1 1

2 2

a b

a b
≠  or, a

1
 b

2
 – a

2 
b

1
 ≠ 0,  then the system of linear

equations has a unique solution). The number a
1
 b

2
 – a

2 
b

1

which determines uniqueness of solution is associated with the matrix 
1 1

2 2

A
a b

a b

 
=  

 

and is called the determinant of A or det A. Determinants have wide applications in

Engineering, Science, Economics, Social Science, etc.

In this chapter, we shall study determinants up to order three only with real entries.

Also, we will study various properties of determinants, minors, cofactors and applications

of determinants in finding the area of a triangle, adjoint and inverse of a square matrix,

consistency and inconsistency of system of linear equations and solution of linear

equations in two or three variables using inverse of a matrix.

4.2  Determinant

To every square matrix A = [a
ij
] of order n, we can associate a number (real or

complex) called determinant of the square matrix A, where a
ij
 = (i, j)th element of A.
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 104 MATHEMATICS

This may be thought of as a function which associates each square matrix with a

unique number (real or complex). If M is the set of square matrices, K is the set of

numbers (real or complex) and f : M → K is defined by f (A) = k, where A ∈ M and

k ∈ K, then f (A) is called the determinant of A. It is also denoted by | A | or det A or ∆.

If A = 
a b

c d

 
 
 

, then determinant of A is written as |A| = 
a b

c d
 = det (A)

Remarks

(i) For matrix A, | A | is read as determinant of A and not modulus of A.

(ii) Only square matrices have determinants.

4.2.1  Determinant of a matrix of order one

Let A = [a ] be the matrix of order 1, then determinant of A is defined to be equal to a

4.2.2  Determinant of a matrix of order two

Let A = 
11 12

21 22

a a

a a

 
 
 

 be a matrix of order 2 × 2,

then the determinant of A is defined as:

det (A) = |A| = ∆ =  = a
11

a
22

 – a
21

a
12

Example 1 Evaluate 
2 4

–1 2
.

Solution We have 
2 4

–1 2
 = 2 (2) – 4(–1) = 4 + 4 = 8.

Example 2 Evaluate 
1

– 1

x x

x x

+

Solution We have

1

– 1

x x

x x

+
 = x (x) – (x + 1) (x – 1)  = x2 – (x2 – 1) = x2 – x2 + 1 = 1

4.2.3  Determinant of a matrix of order 3 × 3

Determinant of a matrix of order three can be determined by expressing it in terms of

second order determinants. This is known as expansion of a determinant along

a row (or a column). There are six ways of expanding a determinant of order
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3 corresponding to each of three rows (R
1
, R

2
 and R

3
) and three columns (C

1
, C

2
 and

C
3
) giving the same value as shown below.

Consider the determinant of square matrix A = [a
ij
]

3 × 3

i.e., | A | = 21 22 23

31 32 33

a a a

a a a

11 12 13a a a

Expansion along first Row (R
1
)

Step 1 Multiply first element a
11

 of R
1
 by (–1)(1 + 1) [(–1)sum of suffixes in a

11] and with the

second order determinant obtained by deleting the elements of first row (R
1
) and first

column (C
1
) of | A | as a

11
 lies in R

1
 and C

1
,

i.e., (–1)1 + 1 a
11

 
22 23

32 33

a a

a a

Step 2 Multiply 2nd element a
12

 of R
1
 by (–1)1 + 2 [(–1)sum of suffixes in a

12] and the second

order determinant obtained by deleting elements of first row (R
1
) and 2nd column (C

2
)

of | A | as a
12

 lies in R
1
 and C

2
,

i.e., (–1)1 + 2 a
12

 
21 23

31 33

a a

a a

Step 3 Multiply third element a
13

 of R
1
 by (–1)1 + 3 [(–1)sum of suffixes in a

13] and the second

order determinant obtained by deleting elements of first row (R
1
) and third column (C

3
)

of | A | as a
13

 lies in R
1
 and C

3
,

i.e., (–1)1 + 3 a
13

 
21 22

31 32

a a

a a

Step 4 Now the expansion of determinant of A, that is, | A | written as sum of all three

terms obtained in steps 1, 2 and 3 above is given by

det A = |A| = (–1)1 + 1 a
11

 
22 23 21 231 2

12

32 33 31 33

(–1)
a a a a

a
a a a a

++

         + 
21 221 3

13

31 32

(–1)
a a

a
a a

+

or |A| = a
11

 (a
22

 a
33

 – a
32 

a
23

) – a
12

 (a
21

 a
33

 – a
31 

a
23

)

+ a
13

 (a
21

 a
32

 – a
31

 a
22

)
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= a
11

 a
22

 a
33

 – a
11

 a
32 

a
23

 – a
12

 a
21

 a
33

 + a
12

 a
31 

a
23

 + a
13

 a
21

 a
32

– a
13

 a
31

 a
22

... (1)

ANote  We shall apply all four steps together.

Expansion along second row (R
2
)

| A | =

11 12 13

31 32 33

a a a

a a a

21 22 23a a a

Expanding along R
2
,
 
we get

| A | =
12 13 11 132 1 2 2

21 22

32 33 31 33

(–1) (–1)
a a a a

a a
a a a a

+ ++

11 122 3
23

31 32

(–1)
a a

a
a a

++

= – a
21

 (a
12

 a
33

 – a
32 

a
13

) + a
22

 (a
11

 a
33

 – a
31 

a
13

)

– a
23

 (a
11

 a
32

 – a
31

 a
12

)

| A | = – a
21

 a
12

 a
33

 + a
21

 a
32 

a
13

 + a
22

 a
11

 a
33

 – a
22

 a
31 

a
13

 – a
23

 a
11

 a
32

 + a
23

 a
31

 a
12

= a
11

 a
22

 a
33

 – a
11

 a
23

 a
32

 – a
12

 a
21

 a
33

 + a
12

 a
23

 a
31

 + a
13

 a
21

 a
32

– a
13

 a
31

 a
22

... (2)

Expansion along first Column (C
1
)

| A | =

12 13

22 23

32 33

11

21

31

a

a

a

a a

a a

a a

By expanding along C
1
, we get

| A | =
22 23 12 131 1 2 1

11 21

32 33 32 33

(–1) ( 1)
a a a a

a a
a a a a

+ ++ −

+ 
12 133 1

31

22 23

(–1)
a a

a
a a

+

= a
11

 (a
22

 a
33

 – a
23

 a
32

) – a
21

 (a
12

 a
33

 – a
13

 a
32

) + a
31

 (a
12

 a
23

 – a
13

 a
22

)
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| A | = a
11

 a
22

 a
33

 – a
11

 a
23

 a
32

 – a
21

 a
12

 a
33

 + a
21

 a
13

 a
32

 + a
31

 a
12

 a
23

– a
31

 a
13

 a
22

= a
11

 a
22

 a
33

 – a
11

 a
23

 a
32

 – a
12

 a
21

 a
33

 + a
12

 a
23

 a
31

 + a
13

 a
21

 a
32

– a
13

 a
31

 a
22

... (3)

Clearly, values of | A | in (1), (2) and (3) are equal. It is left as an exercise to the

reader to verify that the values of |A| by expanding along R
3
, C

2
 and C

3
 are equal to the

value of | A | obtained in (1), (2) or (3).

Hence, expanding a determinant along any row or column gives same value.

Remarks

(i) For easier calculations, we shall expand the determinant along that row or column

which contains maximum number of zeros.

(ii) While expanding, instead of multiplying by (–1)i + j, we can multiply by +1 or –1

according as (i + j) is even or odd.

(iii) Let A = 
2 2

4 0

 
 
 

 and B = 
1 1

2 0

 
 
 

 . Then, it is easy to verify that A = 2B. Also

| A | = 0 – 8 = – 8 and |B | = 0 – 2 = – 2.

Observe that, | A | = 4(– 2) = 22 |B | or | A | = 2n |B |, where n = 2 is the order of

square matrices A and B.

In general, if A = kB where A and B are square matrices of order n, then | A| = kn

| B |, where n = 1, 2, 3

Example 3 Evaluate the determinant  ∆ = 

1 2 4

–1 3 0

4 1 0

.

Solution Note that in the third column, two entries are zero. So expanding along third

column (C
3
), we get

∆ =
–1 3 1 2 1 2

4 – 0 0
4 1 4 1 –1 3

+

= 4 (–1 – 12) – 0 + 0  = – 52

Example 4 Evaluate ∆ = 

0 sin – cos

– sin 0 sin

cos – sin 0

α α

α β

α β

.

2021-22



 108 MATHEMATICS

Solution Expanding along R
1
, we get

∆ =
0 sin – sin sin –sin 0

0 – sin – cos
– sin 0 cos 0 cos – sin

β α β α
α α

β α α β

= 0 – sin α (0 – sin β cos α) – cos α (sin α sin β – 0)

= sin α sin β cos α – cos α sin α sin β = 0

Example 5 Find values of x for which 
3 3 2

1 4 1

x

x
= .

Solution We have 
3 3 2

1 4 1

x

x
=

i.e. 3 – x2 = 3 – 8

i.e. x2 = 8

Hence x = 2 2±

EXERCISE 4.1

Evaluate the determinants in Exercises 1 and 2.

1.
2 4

–5 –1

2. (i)
cos – sin

sin cos

θ θ

θ θ
(ii)

2 – 1 – 1

1 1

x x x

x x

+

+ +

3. If A = 
1 2

4 2

 
 
 

, then show that | 2A | = 4 | A |

4. If A = 

1 0 1

0 1 2

0 0 4

 
 
 
  

, then show that | 3 A | = 27 | A |

5. Evaluate the determinants

(i)

3 –1 –2

0 0 –1

3 –5 0

(ii)

3 – 4 5

1 1 –2

2 3 1
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(iii)

0 1 2

–1 0 –3

–2 3 0

(iv)

2 –1 –2

0 2 –1

3 –5 0

6. If A = 

1 1 –2

2 1 –3

5 4 –9

 
 
 
  

, find | A |

7. Find values of x, if

(i)
2 4 2 4

5 1 6

x

x
= (ii)

2 3 3

4 5 2 5

x

x
=

8. If 
2 6 2

18 18 6

x

x
= , then x is equal to

(A) 6 (B) ± 6 (C) – 6 (D) 0

4.3 Properties of Determinants

In the previous section, we have learnt how to expand the determinants. In this section,
we will study some properties of determinants which simplifies its evaluation by obtaining
maximum number of zeros in a row or a column. These properties are true for
determinants of any order. However, we shall restrict ourselves upto determinants of
order 3 only.

Property 1 The value of the determinant remains unchanged if its rows and columns
are interchanged.

Verification Let   ∆ = 

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

Expanding along first row, we get

∆ =
2 3 1 3 1 2

1 2 3

2 3 1 3 1 2

b b b b b b
a a a

c c c c c c
− +

= a
1
 (b

2 
c

3
 – b

3
 c

2
) – a

2
 (b

1
 c

3
 – b

3
 c

1
) + a

3
 (b

1
 c

2
 – b

2
 c

1
)

By interchanging the rows and columns of ∆, we get the determinant

∆
1
 =

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c
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Expanding ∆
1
 along first column, we get

∆
1 
= a

1
 (b

2
 c

3
 – c

2
 b

3
) – a

2
 (b

1
 c

3
 – b

3
 c

1
) + a

3
 (b

1
 c

2
 – b

2
 c

1
)

Hence ∆ = ∆
1

Remark It follows from above property that if A is a square matrix, then

det (A) = det (A′), where A′ = transpose of A.

ANote  If R
i
 = ith row and  C

i
 = ith column, then for interchange of row and

columns, we will symbolically write C
i
 ↔ R

i

Let us verify the above property by example.

Example 6 Verify Property 1 for ∆ = 

2 –3 5

6 0 4

1 5 –7

Solution Expanding the determinant along first row, we have

∆ =
0 4 6 4 6 0

2 – (–3) 5
5 –7 1 –7 1 5

+

= 2 (0 – 20) + 3 (– 42 – 4) + 5 (30 – 0)

= – 40 – 138 + 150 = – 28

By interchanging rows and columns, we get

∆
1
 =

2 6 1

–3 0 5

5 4 –7

     (Expanding along first column)

=
0 5 6 1 6 1

2 – (–3) 5
4 –7 4 –7 0 5

+

= 2 (0 – 20) + 3 (– 42 – 4) + 5 (30 – 0)

= – 40 – 138 + 150 = – 28

Clearly ∆ = ∆
1

Hence, Property 1 is verified.

Property 2 If any two rows (or columns) of a determinant are interchanged, then sign
of determinant changes.

Verification Let ∆ = 

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c
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Expanding along first row, we get

∆ = a
1
 (b

2
 c

3
 – b

3
 c

2
) – a

2 
(b

1
 c

3
 – b

3
 c

1
) + a

3
 (b

1
 c

2
 – b

2
 c

1
)

Interchanging first and third rows, the new determinant obtained is given by

∆
1
 =

1 2 3

1 2 3

1 2 3

c c c

b b b

a a a

Expanding along third row, we get

∆
1 
= a

1
 (c

2
 b

3
 – b

2
 c

3
) – a

2
 (c

1
 b

3
 – c

3
 b

1
) + a

3
 (b

2
 c

1
  – b

1
 c

2
)

= – [a
1
 (b

2
 c

3
 – b

3
 c

2
) – a

2
 (b

1
 c

3
 – b

3
 c

1
) + a

3
 (b

1
 c

2
 – b

2
 c

1
)]

Clearly ∆
1
 = – ∆

Similarly, we can verify the result by interchanging any two columns.

ANote  We can denote the interchange of rows by R
i
 ↔ R

j
 and interchange of

columns by C
i
 ↔ C

j
.

Example 7 Verify Property 2 for ∆ = 

2 –3 5

6 0 4

1 5 –7

.

Solution ∆ = 

2 –3 5

6 0 4

1 5 –7

 = – 28 (See Example 6)

Interchanging rows R
2
 and R

3
 i.e., R

2
 ↔ R

3
, we have

∆
1
 =

2 –3 5

1 5 –7

6 0 4

Expanding the determinant ∆
1
 along first row, we have

∆
1
 =

5 –7 1 –7 1 5
2 – (–3) 5

0 4 6 4 6 0
+

= 2 (20 – 0) + 3 (4 + 42) + 5 (0 – 30)

= 40 + 138 – 150 = 28
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Clearly ∆
1
 = – ∆

Hence, Property 2 is verified.

Property 3 If any two rows (or columns) of a determinant are identical (all corresponding

elements are same), then value of determinant is zero.

Proof If we interchange the identical rows (or columns) of the determinant ∆, then ∆

does not change. However, by Property 2, it follows that ∆ has changed its sign

Therefore ∆ = – ∆

or ∆ = 0

Let us verify the above property by an example.

Example 8 Evaluate ∆ = 

3 2 3

2 2 3

3 2 3

Solution Expanding along first row, we get

∆ = 3 (6 – 6) – 2 (6 – 9) + 3 (4 – 6)

 = 0 – 2 (–3) + 3 (–2) = 6 – 6 = 0

Here R
1
 and R

3
 are identical.

Property 4 If each element of a row (or a column) of a determinant is multiplied by a

constant k, then its value gets multiplied by k.

Verification Let ∆ = 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

and ∆
1
 be the determinant obtained by multiplying the elements of the first row by k.

Then

∆
1
 =

1 1 1

2 2 2

3 3 3

k a k b k c

a b c

a b c

Expanding along first row, we get

∆
1
 = k a

1 
(b

2
 c

3
 – b

3
 c

2
) – k b

1
 (a

2
 c

3
 – c

2
 a

3
) + k c

1
 (a

2
  b

3
 – b

2 
a

3
)

= k [a
1
 (b

2
 c

3
 – b

3
 c

2
) – b

1
 (a

2
 c

3
 – c

2
 a

3
) + c

1
 (a

2
 b

3
 – b

2
 a

3
)]

= k ∆
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Hence

1 1 1

2 2 2

3 3 3

k a k b k c

a b c

a b c

 = k 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

Remarks

(i) By this property, we can take out any common factor from any one row or any

one column of a given determinant.

(ii) If corresponding elements of any two rows (or columns) of a determinant are

proportional (in the same ratio), then its value is zero. For example

∆ =

1 2 3

1 2 3

1 2 3

a a a

b b b

k a k a k a

 = 0 (rows R
1
 and R

2
 are proportional)

Example 9 Evaluate 

102 18 36

1 3 4

17 3 6

Solution Note that 

6(17) 6(3) 6(6) 17 3 6102 18 36

1 3 4 1 3 4 6 1 3 4 0

17 3 6 17 3 6 17 3 6

= = =

(Using Properties 3 and 4)

Property 5 If some or all elements of a row or column of a determinant are expressed

as sum of two (or more) terms, then the determinant can be expressed as sum of two

(or more) determinants.

For example,

1 1 2 2 3 3

1 2 3

1 2 3

a a a

b b b

c c c

+ λ + λ + λ

 = 

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

a a a

b b b b b b

c c c c c c

λ λ λ

+

Verification L.H.S. = 

1 1 2 2 3 3

1 2 3

1 2 3

a a a

b b b

c c c

+ λ + λ + λ
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Expanding the determinants along the first row, we get

∆ = (a
1
 + λ

1
) (b

2
 c

3
 – c

2
 b

3
) – (a

2
 + λ

2
) (b

1
 c

3
 – b

3
 c

1
)

+ (a
3
 + λ

3
) (b

1
 c

2
 – b

2
 c

1
)

= a
1
 (b

2
 c

3
 – c

2
 b

3
) – a

2
 (b

1
 c

3
 – b

3
 c

1
) + a

3
 (b

1
 c

2
 – b

2
 c

1
)

+ λ
1
 (b

2
 c

3
 – c

2
 b

3
) – λ

2
 (b

1
 c

3
 – b

3
 c

1
) + λ

3
 (b

1
 c

2
 – b

2
 c

1
)

(by rearranging terms)

 =

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

a a a

b b b b b b

c c c c c c

λ λ λ

+  = R.H.S.

Similarly, we may verify Property 5 for other rows or columns.

Example 10 Show that 2 2 2 0

a b c

a x b y c z

x y z

+ + + =

Solution We have 2 2 2

a b c

a x b y c z

x y z

+ + +   = 2 2 2

a b c a b c

a b c x y z

x y z x y z

+

(by Property 5)

= 0 + 0 = 0 (Using Property 3 and Property 4)

Property 6 If, to each element of any row or column of a determinant, the equimultiples

of corresponding elements of other row (or column) are added, then value of determinant

remains the same, i.e., the value of determinant remain same if we apply the operation

R
i
  → R

i
 + kR

j
 or C

i
 → C

i
 + k C

j
.

Verification

Let ∆ =

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

 and  ∆
1
 = 

1 1 2 2 3 3

1 2 3

1 2 3

a k c a k c a k c

b b b

c c c

+ + +

,

where ∆
1
 is obtained by the operation R

1
 → R

1
 + kR

3
 .

Here, we have multiplied the elements of the third row (R
3
) by a constant k and

added them to the corresponding elements of the first row (R
1
).

Symbolically, we write this operation as R
1
 → R

1
 + k R

3
.
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Now, again

∆
1
 =

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

a a a k c k c k c

b b b b b b

c c c c c c

+  (Using Property 5)

= ∆ + 0 (since R
1
 and R

3
 are proportional)

Hence ∆ = ∆
1

Remarks

(i) If ∆
1
 is the determinant obtained by applying R

i
 → kR

i
 or C

i
 → kC

i
 to the

determinant ∆, then ∆
1
 = k∆.

(ii) If more than one operation like R
i
 → R

i
 + kR

j
 is done in one step, care should be

taken to see that a row that is affected in one operation should not be used in

another operation. A similar remark applies to column operations.

Example 11 Prove that 
32 3 2 4 3 2

3 6 3 10 6 3

a a b a b c

a a b a b c a

a a b a b c

+ + +

+ + + =

+ + +

.

Solution Applying operations R
2
 → R

2
 – 2R

1
 and R

3
 → R

3
 – 3R

1
 to the given

determinant ∆, we have

∆ = 0 2

0 3 7 3

a a b a b c

a a b

a a b

+ + +

+

+

Now applying R
3
 → R

3
 – 3R

2 
, we get

∆ = 0 2

0 0

a a b a b c

a a b

a

+ + +

+

Expanding along  C
1
, we obtain

∆ =
2

0

a a b
a

a

+
 + 0 + 0

= a (a2 – 0) = a (a2) = a3
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Example 12 Without expanding, prove that

∆ = 0

1 1 1

x y y z z x

z x y

+ + +

=

Solution Applying R
1
 → R

1
 + R

2
 to ∆, we get

∆ =

1 1 1

x y z x y z x y z

z x y

+ + + + + +

Since the elements of R
1
 and R

3
 are proportional, ∆ = 0.

Example 13 Evaluate

∆ =

1

1

1

a bc

b ca

c ab

Solution Applying R
2
 → R

2
 – R

1
 and R

3
 → R

3
 – R

1
, we get

∆ =

1

0 ( )

0 ( )

a bc

b a c a b

c a b a c

− −

− −

Taking factors (b – a) and (c – a) common from R
2
 and R

3
, respectively, we get

∆ =

1

( ) ( ) 0 1 –

0 1 –

a bc

b a c a c

b

− −

= (b – a) (c – a) [(– b + c)] (Expanding along first column)

= (a – b) (b – c) (c – a)

Example 14 Prove that 4

b c a a

b c a b abc

c c a b

+

+ =

+

Solution Let  ∆ = 

b c a a

b c a b

c c a b

+

+

+
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Applying R
1
 → R

1
 – R

2
 – R

3
 to ∆, we get

∆ =

0 –2 –2c b

b c a b

c c a b

+

+

Expanding along R
1
, we obtain

∆ = 0 – (–2 )
c a b b b

c
c a b c a b

+

+ +
 (–2 )

b c a
b

c c

+
+

= 2 c (a b + b2 – bc) – 2 b (b c – c2 – ac)

= 2 a b c + 2 cb2 – 2 bc2 – 2 b2c + 2 bc2 + 2 abc

= 4 abc

Example 15 If x, y, z are different and 

2 3

2 3

2 3

1

1 0

1

x x x

y y y

z z z

+

∆ = + =

+

, then

show that 1 + xyz = 0

Solution We have

∆ =

2 3

2 3

2 3

1

1

1

x x x

y y y

z z z

+

+

+

 =

2 2 3

2 2 3

2 2 3

1

1

1

x x x x x

y y y y y

z z z z z

+   (Using Property 5)

=

2 2

2 2 2

2 2

1 1

( 1) 1 1

1 1

x x x x

y y xyz y y

z z z z

− + (Using C
3
↔ C

2
 and then C

1
 ↔ C

2
)

=

2

2

2

1

1 (1 )

1

x x

y y xyz

z z

+
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 = ( )

2

2 2

2 2

1

1 0

0

x x

xyz y x y x

z x z x

+ − −

− −

(Using R
2
→ R

2
–R

1
 and R

3
 → R

3
–R

1
)

Taking out common factor (y – x) from R
2
 and (z – x) from R

3
, we get

∆ =

2
1

(1+ ) ( – ) ( – ) 0 1

0 1

x x

xyz y x z x y x

z x

+

+

= (1 + xyz) (y – x) (z – x) (z – y) (on expanding along C
1
)

Since ∆ = 0 and x, y, z are all different, i.e., x – y ≠ 0, y – z ≠ 0, z – x ≠ 0, we get

1 + xyz = 0

Example 16 Show that

1 1 1
1 1 1

1 1 1 1

1 1 1

a

b abc abc bc ca ab
a b c

c

+
 

+ = + + + = + + + 
 

+

Solution Taking out factors a,b,c common from R
1
, R

2
 and R

3
, we get

L.H.S. =

1 1 1
1

1 1 1
1

1 1 1
1

a a a

abc
b b b

c c c

+

+

+

Applying R
1
→ R

1 
+ R

2 
+ R

3
, we have

∆ =

1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1

1 1 1
1

a b c a b c a b c

abc
b b b

c c c

+ + + + + + + + +

+

+
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 =

1 1 1

1 1 1 1 1 1
1+ 1

1 1 1
1

abc
a b c b b b

c c c

 
+ + + 

 

+

Now applying C
2 
→ C

2 
– C

1
, C

3 
→ C

3 
– C

1
, we get

∆ =

1 0 0

1 1 1 1
1+ 1 0

1
0 1

abc
a b c b

c

 
+ + 

 

= ( )
1 1 1

1 1 1– 0abc
a b c

 
+ + +    

 

=
1 1 1

1+abc
a b c

 
+ + 

 
 = abc + bc + ca + ab = R.H.S.

ANote  Alternately try by applying C
1
 → C

1
 – C

2
 and C

3
 → C

3
 – C

2
, then apply

C
1
 → C

1
 – a C

3
.

EXERCISE  4.2

Using the property of determinants and without expanding in Exercises 1 to 7, prove
that:

1. 0

x a x a

y b y b

z c z c

+

+ =

+

2. 0

a b b c c a

b c c a a b

c a a b b c

− − −

− − − =

− − −

3.

2 7 65

3 8 75 0

5 9 86

= 4.

( )
( )
( )

1

1 0

1

bc a b c

ca b c a

ab c a b

+

+ =

+

5. 2

b c q r y z a p x

c a r p z x b q y

a b p q x y c r z

+ + +

+ + + =

+ + +
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6.

0

0 0

0

a b

a c

b c

−

− − = 7.

2

2 2 2 2

2

4

a ab ac

ba b bc a b c

ca cb c

−

− =

−

By using properties of determinants, in Exercises 8 to 14, show that:

8. (i)  ( )( )( )

2

2

2

1

1

1

a a

b b a b b c c a

c c

= − − −

(ii)  ( )( )( )( )
3 3 3

1 1 1

a b c a b b c c a a b c

a b c

= − − − + +

9.

2

2

2

x x yz

y y zx

z z xy

= (x – y) (y – z) (z – x) (xy + yz + zx)

10. (i)  ( )( )
2

4 2 2

2 4 5 4 4

2 2 4

x+ x x

x x+ 2x x x

x x x+

= + −

(ii)  ( )2
3

y+ k y y

y y + k y k y k

y y y + k

= +

11. (i)  ( )
3

2 2

2 2

2 2

a b c a a

b b c a b a b c

c c c a b

− −

− − = + +

− −

(ii)  ( )
3

2

2 2

2

x y z x y

z y z x y x y z

z x z x y

+ +

+ + = + +

+ +
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12. ( )

2

2
2 3

2

1

1 1

1

x x

x x x

x x

= −

13. ( )

2 2

3
2 2 2 2

2 2

1 2 2

2 1 2 1

2 2 1

a b ab b

ab a b a a b

b a a b

+ − −

− + = + +

− − −

14.

2

2 2 2 2

2

1

1 1

1

a ab ac

ab b bc a b c

ca cb c

+

+ = + + +

+

Choose the correct answer in Exercises 15 and 16.

15. Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) k| A | (B) k2 | A | (C) k3 | A | (D) 3k | A |

16. Which of the following is correct

(A) Determinant is a square matrix.

(B) Determinant is a number associated to a matrix.

(C) Determinant is a number associated to a square matrix.

(D) None of these

4.4  Area of a Triangle

In earlier classes, we have studied that the area of a triangle whose vertices are

(x
1
, y

1
), (x

2
, y

2
) and (x

3
, y

3
), is given by the expression 

1

2
[x

1
(y

2
–y

3
) + x

2
 (y

3
–y

1
) +

x
3
 (y

1
–y

2
)]. Now this expression can be written in the form of a determinant as

∆ =

1 1

2 2

3 3

1
1

1
2

1

x y

x y

x y

... (1)

Remarks

(i) Since area is a positive quantity, we always take the absolute value of the

determinant in (1).
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